
TEC-0125

Learning to Populate
Geospatial Databases
via Markov Processes

Bruce A. Draper
J. Ross Beveridge

Colorado State University
601 South Howes Street
Fort Collins, CO 80523

December 1999

Approved for public release; distribution is unlimited.

Prepared for:

Defense Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington, VA 22203-1714

Monitored by:

U.S. Army Corps of Engineers
Topographic Engineering Center
7701 Telegraph Road
Alexandria, Virginia 22315-3864

BTia QUALITY IN3PECTED 3

US Army Corps
of Engineers
Topographic
Engineering Center

20000310 089

Destroy this report when no longer needed.
Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army
position unless so designated by other authorized documents.

The citation in this report of trade names of commercially available products does not
constitute official endorsement or approval of the use of such products.

REPORT DOCUMENTATION PAGE
Form Approved

OMBNo. 0704-0188

ir.^by^l.rtlUCOl^.lrtonwfcnil«^^

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
December 1999

4. TITLE AND SUBTITLE

3. REPORT TYPE AND DATES COVERED
Final Technical April 1997 - July 1998

5. FUNDING NUMBERS

Learning to Populate Geospatial Databases via Markov Processes

6. AUTHOR(S)

Bruce A. Draper
J. Ross Beveridge

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Colorado State University
Department of Computer Science
601 South Howes Street
Fort Collins, CO 80523

DACA76-97-K-0006

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency
3701 North Fairfax Drive, Arlington, VA 22203-1714

U.S. Army Engineer Research and Development Center
Topographic Engineering Center
7701 Telegraph Road, Alexandria, VA 22315-3864

10. SPONSORING I MONITORING
AGENCY REPORT NUMBER

TEC-0125

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words!

Thk renort describes a 2-vear project on learning to recognize an object using Markov decision processes. The underlying
^^S^SfiSSlaavmc vifion has made a great deal of progress during the last 20 years producing
Et^ for specific subtasks (e.g., edge detection, model matching, stereo), it has produced very few end-to-end
ScSs TOsproject investigated whether Markov decision processes and reinforcement learning might be used to
SmatiSv seauence and control vision algorithms to achieve specific tasks. In particu ar, we focus on learning
obec7£ecrfi^Snmon str^egies using reinforcement learning, where the vision algorithms to be controlled are a set of
??JSSS^a^SteSJvSSl algoruhms. Although the work reported here is only a first attempt at a complex probkm
w^S^to SSmtodlylSn to recognize two different classes of objects (buildings and maintenance rails) in aerial
IJSS WeXwre able to learn to distinguish one style of house from four other styles of houses in the
^^S^2?$ FortMood Wim a sUßhüvhigher error rate, we were able to distinguish all five types of houses from
each other a^SS'ility S leä^ to Sify similar yet different classes of objects. Finally we were able to
to^teSSK2!f£ dynSüc control policies learned by reinforcement learning were better than any possible fixed
sequence of algorithms.

14. SUBJECT TERMS

Object recognition, reinforcement learning

L

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION OF THIS
PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES
23

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UNLIMITED

NSN 754001-280-5500
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18 298-102

USAPPCVI.OO

TABLE OF CONTENTS

PAGE

LIST OF FIGURES AND TABLES. .IV

PREFACE v

1. INTRODUCTION • X

2. THE ORIGINAL PROPOSAL]

3. MODIFICATIONS TO THE ORIGINAL PROPOSAL 3

4. ACCOMPLISHMENT: THE ADORE SYSTEM ■ 6

4.1 The Execution Monitor 6

4.2. Control Policies '

o
4.3 Off-line Learning °

g
4.4 Bagging

5. EXPERIMENTS 9

5.1 The Vision Procedure Library 10

5.2 Finding Duplexes 12

5.3 Finding Smaller Houses 1J

6. CONCLUSION • 15

7. BIBLIOGRAPHY 17

APPENDIX A 19

APPENDIX B 26

in

LIST OF FIGURES AND TABLES

FIGURES
PAGE

Figure 1. Results of Closed-loop vs. Open-loop Milestone 5

Figure 2. A nadir-view aerial image of the residential section of Fort Hood, TX 9

Figure 3. A Duplex 10

Figure 4. The training signal for Duplexes for the training image shown in Figure 2 10

Figure 5. An iconic depiction of ADORE's current vision procedure library 11

Figure 6. Duplexes extracted from two images 12

Figure 7. Templates of four other styles of houses 14

Figure 8. ROIs plotted in two dimensions of the eleven dimensional feature space 15

TABLES

Table 1. Comparison between the optimal policy, the policy learned by ADORE, and
the four best fixed policies 13

IV

PREFACE

This report was sponsored by the Defense Advanced Research Projects Agency
(DARPA) and monitored by the U.S. Army Topographic Engineering Center (TEC), Alexandria,
Virginia 22315-3864 under contract DACA76-97-K-0006, titled, Learning to Populate
Geospatial Databases via Markov Processes. The DARPA Program Manager was Mr. George
Lukes, and the TEC Contracting Officer's Representative was Ms. Lauretta Williams.

LEARNING TO POPULATE GEOSPATIAL DATABASES VIA
MARKOV PROCESSES

1. Introduction

The goal of this contract was to develop underlying technology to help close the gap between the
military's needs for comprehensive battlefield awareness and current image understanding (IU)
capabilities. In particular, the primary goal was to develop machine learning technology to
recognize semantically meaningful features such as roads, waterways, and military targets in
aerial images so that these features could be added to geospatial databases. In particular, we
sought to eliminate three limitations of current IU technology: 1) Number of Targets. Most IU
systems recognize a small number of object classes within a limited domain; 2) Sensor
Limitations. Most IU systems interpret a single, fixed type of imagery (usually EO, but
sometimes IR, SAR, or IFSAR); a few combine data from two sensors, for example EO and
IFSAR data; and 3) Automatic Systems. Most current IU systems require some degree of
operator assistance, whether it is to parameterize the system based on image and/or domain
characteristics or to restrict its application to a region of an image.

To accomplish these goals, we suggest that IU should be approached as a Markov Decision
Process (MDP). We believe that the technology base of IU procedures forms a library of
discrete actions for image interpretation, and that intermediate data instances (2-D and 3-D
images, points, lines, surfaces, etc.) form an infinite but structured search space of possible
states. The process of object recognition can be modeled as a sequence of IU procedures applied
to a series of intermediate states.

Unfortunately, this contract was terminated halfway through the scheduled life of the project. To
explain what was accomplished and the state of the project at termination, this report is divided
into three sections. Section 2 reviews the initial proposal; Section 3 outlines the modifications to
the original plans made at the behest of Dr. Tom Strat, who was the DARPA program manager at
that time- and Section 4 describes the accomplishments of the project at the point of termination.
The first two major research publications about this work - Bagging in Computer Vision, which
appeared in the IEEE Conference on Computer Vision and Pattern Recognition in June 1998,
and ADORE: Adaptive Object Recognition, published at the International Conference on Vision
Systems in January 1999- are included as appendices.

2. The Original Proposal

The original proposal was predicated on the belief that a Markov decision process formalism is a
constructive framework for image understanding because it distinguishes between IU procedures
and the control strategies used to integrate them, and because it provides a mathematical model
of control in terms of policies. Formally, a control policy is a function that maps states (in this
case instances of intermediate data) onto actions (in this case, IU procedures); at each step of
processing, the control policy selects the next action based on the properties of the data produced
by the previous processing step.

In image understanding, control policies can be used to implement object-specific and task-
specific recognition strategies. For example, the strategy for recognizing traditional, rectilinear
buildings may be completely different from the one for recognizing Quonset huts. Modeling IU
as an MDP allows the introduction of reinforcement learning (RL) techniques for training
object-specific and task-specific control policies from examples. Reinforcement learning not
only makes it possible to acquire large numbers of object recognition policies with less effort
(and no reprogramming), it also produces well-motivated policies that maximize a utility
function based on cost and accuracy. RL control policies are robust, in the sense that if a sensor
is unavailable or an IU procedure fails, the control policy will react and select an alternative
action.

We proposed to build a prototype system to learn control policies for 3-D object recognition
using reinforcement learning, and to evaluate the system on the Ft. Hood and Kirkland/Sandia
data sets. That system, that we now call ADORE1, was to draw upon IU procedures from the
IUE, KBVision and Khoros image libraries, as well as IU procedures developed locally at
Colorado State University and the University of Massachusetts. Whereas we had already
demonstrated some initial, limited success in learning control policies to identify objects in 2-D
images prior to this proposal, our new work was to emphasize learning to extract 3-D
representations of objects from various types of sensor data (initially IFSAR and pairs of
overlapping EO images).

Two methods of training were proposed for 3-D-AMORE. The first, lower-risk method uses 3-D
CAD models of example object instances as the basis for the reward signal. This method applies
when 3-D models are available, for example, from a partial site model or BRL/CAD models of
military targets. The second, higher-risk method would exploit the redundant information in
overlapping 3-D images without relying on pre-existing models. In this method, policies are
trained by noting the position of objects in overlapping 3-D images, and extracting 3-D
representations of the objects (in terms of grouped 3-D primitives) from one of those images.
The reward signal for this method is based on how well 3-D representations extracted from one
image predict the raw sensory data in another.

Finally, we proposed to study whether it is possible to continually adapt control policies over
time without human intervention. In principle, it is possible to initially train control policies
using a library of IU procedures, and then to add new procedures or sensors to the system
afterward. By feeding a control policy's results back to itself as a training signal, the
reinforcement learning algorithm should adapt the policy to take advantage of the new
procedures/data.

This proposal had its intellectual roots in a long tradition of research into object-specific and
task-specific control of computer vision [Hanson & Riseman 78; Draper, et al., 89], and further
develops work begun at the University of Massachusetts on learning control strategies for object
recognition Praper 96a, 96b]. At the same time, this proposal extends these ideas in several new
and exciting ways. First, the previous effort focused primarily on classifying objects (such as
rooftops) in 2-D images. This proposal focused on extracting 3-D representations of object

1 ADORE: Adaptive Object REcognition

instances as well as identifying them, and will develop methods for learning to recognize objects
in 3-D without a-priori models, as mentioned above. In addition, we propose to study how to
continuously adapt control policies during normal operation (as opposed to during initial
training) "Die idea of an IU system that continually improves itself during operation without
human intervention was perhaps the most exciting one of this proposal. It implies for example,
that new sensors or IU procedures could be added to an operating IU system without
reprogramming the system or even taking it off-line.

We believe that the impact of this work - had it been completed to fruition - would go far
ZloT±t*™cäiJd^Hes. During the last 20 years, the field of image ********
Evaded into 10-20 (or more) subfields, each with a narrowly-defined problem focus. Within
ea^h ubfield, theories have been developed and tested and different solution methodobgies
have been adopted. As a result, there are now several good and improving algorithms for edge
Sine" action (straight and curved), feature tracking, depth from motion^(two-frame and
muliframe), came a calibration and 3-D pose determination, to name jus a few of Je areas n
which progress has been made. Progress in 3-D vision has been particularly strong the advent of
3-D IFSAR sensors and improvements in stereo processing now provide basic procedures for
exacting and reasoning about 3-D information. One of the areas in which relatively httle
^greSbeen made8 however, is the so-called «high-level» vision. We believe that tins lack
of process results from the lack of a theory of vision. Without a common framework for
^^h^vd image interpretation or a mathematical basis for comparing and analyzing
S3 syLns, progress in this area has stalled. We believe that the Markov Decision
SS(Sm5d^&es^e type of framework that is needed to enable progress not only m the
^^Loa of geosfpatial databases, but of many complex image understanding tasks.

3. Modifications to the Original Proposal

When we were notified that this proposal would be funded in January 1997, we were asked to
malcertain changes by Dr. Tom Strat, who was then the DARPA program manager. The most
Samatic chLce was that the subcontract to the University of Massachusetts was dropped, and
tToneywS nSad used to add Dr. Ross Beveridge (of CSU) and one of his students to the
S^TtoW a dramatic effect on the project, since UMass was to provide the optical stereo
£d IR visfon procedures to the project. Dr. Beveridge, on the other hand, is an expert in target
Cognition and 2-D model matching, and brought procedures for these activities to the project.

The contractual changes dropping the University of Massachusetts and adding Dr. Beveridge's
team toTLtract were formally negotiated with DARPA. Unfortunately, the corresponding
h^gesTo the deliverables stemming from these changes were never put * ™^£* a

they were negotiated between Dr. Strat, a TEC representative, Dr. Bevendge and Dr Draper at
the APGD kick-off meeting in California. At this meeting, it was agreed that the 3-D
.construction and IR aspects of the project would be dropped, and^the proje<:t would fecus on
learning 2-D recognition strategies, including strategies with embedded ATRrout nes. The
™ng was thafthe underlying technology with regard to learning, ^f^ctote«
recognition is the same whether the task is 2-D or 3-D, and that by concentrating, die project s
resources on 2-D recognition, progress in learning and control would be maximized. (Note that

2-D vision procedures are far more widely available through Khoros and the IUE than are 3-D
procedures.)

At this meeting, the following list of milestones for the project was agreed to:
1. Six Months:

a) Software infrastructure for control of vision procedures developed
b) Experiment showing that open-loop strategies outperform closed-loop strategies

2 One Year:
a) Recognition of two objects using automatically trained control policies
b) Evaluation of those control policies.

In December 1997 we presented the first two milestones at the APGD workshop in Ft. Benning,
GA. At this workshop, we reported that the first version of the software infrastructure for the
project was complete. We reported the results of a study in which we compared the optimal
closed-loop policy for a simple recognition task to the optimal open-loop policy for the same
task. Unfortunately, this result was widely misunderstood by the audience as a report on 2-D
roof recognition.

In fact, the intent of this study was to measure the relative improvement of closed-loop control
vs. open-loop control for a simple 2-D recognition task. The motivation for this study (and the
reason it was included in the scheduled milestones) is that the complexity of the Markov model
is justified by the fact that it produces open-loop strategies. An open-loop strategy is defined as
a strategy in which the sequence of vision procedures is not fixed before recognition begins;
instead, new procedures are selected dynamically based on the results of previous actions.
(Strategies in which a fixed sequence of procedures are selected a priori are called closed-loop
strategies, and most other systems for learning visual control policies learn closed-loop
strategies, e.g. [Au & Wang, Peng & Bhanu]).

Reinforcement learning models vision as a Markov decision process, and produces open-loop
strategies. One of our first tasks was to justify this expense by showing that open-loop strategies
outperform closed-loop strategies on even simple vision tasks. Logically, the more complex the
task, the greater the benefit of closed-loop control over open-loop control should be ; therefore,
we selected as our performance task the goal of finding rooftops in aerial images of a residential
section of Ft. Hood, and collected a small library of simple (mostly pixel-based) vision
procedures for accomplishing this task. We then exhaustively applied all combinations of our
vision procedures to a set of training images, and by reasoning backwards measured 1) the
average reward (measured as accuracy) of the best possible closed-loop strategy, and 2) the
average reward of the best open-loop strategy. We also considered a third type of hybrid
strategy (similar to the type being learned by [Maloof, et al]) in which a fixed sequence of
procedures is selected a priori, but a dynamically trained classifier is inserted between each
processing step.

The results of this study are shown in Figure 1. The closed-loop strategy performed an order of
magnitude better than the open-loop strategy, as expected. The hybrid strategy (shown in the
middle of Figure 1) performed well - within 10 percent of the closed-loop strategy - but was still
non-optimal. We interpreted these results as justification for the Markov-based approach.

Closed vs Open (cont.)
Upper Bound: Comparing Optimal Open-Loop

to Optimal Generate-and-Test & Optimal Closed-Loop

100% o/. -i

CO

P4

77.4%

0%
6.9%

62.4%

Figure 1: Results of Closed-loop vs. Open-loop Milestone

Unfortunately, many in the audience misinterpreted this study as a new method for recognizing
rooftops In fact, our intent was expressly not to introduce any new recognition techniques, but
to use off-the-shelf vision procedures; moreover, we were limited to a small procedure library
since our method was to exhaustively apply the procedures to the training images to guarantee
(independent of inference method) that the optimal control strategies were found for each
category of control policy. Perhaps this misunderstanding emphasizes the notion that this
approach to object recognition is truly novel, and unfamiliar to this community. (Perhaps, too,
we could have presented it more clearly.)

Shortly after the Ft. Benning meeting, there was a site visit from the new DARPA program
manager George Lukes. At this site visit, we demonstrated the software infrastructure, and an
example'of the system learning object recognition strategies for two objects: rooftops and
maintenance rails (of the type used to maintain vehicles in the Ft. Hood motor pool). Although
neither object was an overwhelmingly difficult target (the training rails, m particular, are quite
distinctive), we thereby demonstrated the capability to 1) recognize two object classes (ahead of
schedule), and 2) to learn to recognize two disparate object classes using a single system. To our
knowledge, this later capability is unique.

At the site visit, Mr. Lukes told us that he was unaware that the project had been refocused by
Dr. Strat. Mr. Lukes subsequently decided to terminate the contract early because we were not
doing 3-D reconstruction. While it is true that we did not do 3-D reconstruction as called for in
the original proposal with UMass, we note that 1) we had achieved all scientific and technical
milestones agreed to with Dr. Strat at the kick-off meeting; 2) we were making strong progress
toward our (mutually refocused) objectives; and 3) the technology we were developing is critical
to both 2-D and 3-D object recognition.

While in Ft. Collins for the site visit, Mr. Lukes suggested that if we were going to do 2-D object
recognition, and if we were going to recognize buildings as one of our target objects, then it
would be more appropriate to find the footprint of the partially occluded buildings than to find
the visible portion of the rooftop. Since finding the footprint of an occluded building requires
recognizing the architectural plan of the building and distinguishing it from other, similar
architectural plans, this gave us a set of similar object classes to distinguish from each other - the
task on which we demonstrated our year-end progress.

4. Accomplishment: The ADORE system

The goal of the adaptive object recognition (ADORE) project is to avoid knowledge engineering
by casting object recognition as a supervised learning task. Users train ADORE by providing
training images and training signals, where the training signal gives the desired output for the
training images. ADORE learns control strategies that dynamically select vision procedures in
order to recreate the training signal as closely as possible from the training images. This control
strategy can then be used to hypothesize new object instances in novel images.

To learn control strategies, ADORE models object recognition as a discrete control process. The
state of the system is determined by data produced by vision procedures. For example, the state
of the system might be a region of interest (ROI), a set of 2-D line segments, or a 2-D contour.
The actions are vision procedures that change the state of the system by producing new data from
current data. A control policy is a function that maps states onto actions. In the context of
ADORE, control policies map data onto vision procedures, thereby selecting the next action at
each step of the recognition process.

At a systems level, ADORE is most easily thought of as two distinct components: a run-time
execution monitor that applies vision procedures to data, and an off-line learning system that
trains control policies.

4.1) The Execution Monitor

The execution monitor is a run-time loop that begins when an image is presented to the system.
On each cycle, it evaluates the control policy on the current data, thereby selecting a vision
procedure. It then applies the vision procedure to the current data, producing new data. This
loop continues until a vision procedure returns without producing any new data.

Of course, this simple description glosses over some important details. After every vision
procedure, the execution monitor measures features of the output data to be used in training

control policies. The execution monitor also measures the run-time of each procedure, to be
used as a component in the reward function if the goal is to train control policies that make
tradeoffs between time and accuracy. Finally, there are two special procedures - called accept
and reject - that return no data. The accept procedure signals that an object instance has been
found- during training, accepted data tokens are compared to the training signal and a reward or
penalty is generated. The reject procedure signals that the current data should be rejected; during
training, it always returns a reward of zero.

In the interests of generality, the execution monitor is independent of the vision procedure
library Each vision procedure is an independent unix executable; a library file tells the
execution monitor the number and type of input arguments for each procedure, the number and
type of output arguments, and the unix pathname. As a result, vision procedures can be added or
removed from the system simply by editing the library file. Similarly, the execution momtor is
independent of particular data representations, since all data tokens are kept in files. For each
data type the library file tells the execution monitor 1) the name of the data type (so the momtor
can match data tokens with arguments to vision procedures); 2) the number of features measured
(for function approximation - see below); and 3) the path of the unix executable for measuring
features; thus new data types, like new vision procedures, can easily be added to the system.
(Note that one of the original goals of the original proposal was to keep the systems and the
vision procedure library separate, so that new vision procedures could be easily introduced into a
working system.)

4.2) Control Policies

The execution monitor is a control loop for applying vision procedures to data. The control
policy directs the execution monitor by selecting a vision procedure at each step. Since the
choice of vision procedure depends in part on the target object class and image domain, a
different control policy is learned for every object recognition task.

Control policies are functions that map data tokens (represented in terms of their features) onto
vision procedures. In order to learn sound control policies, object recognition is modeled as a
discrete control problem. In particular, the state of the system is always defined by the features
of the current data. The vision procedures are the discrete actions, and these actions are non-
deterministic in the sense that we cannot predict the features of the output based solely on the
features of its input.

To train a control policy, we train a Q-function for every vision procedure. In control theory, a
O-function is a function that predicts the expected reward that will follow from applying a
specific action to the current state. For example, in ADORE we train a Q-function for predicting
the reward that will result from applying the segmentation procedure to an ROI, based on toe
features of the ROI We also train Q-functions for predicting the rewards that will follow from
applying the active contour procedure to an ROI and the correlation procedure from an image.
Control policies are implemented by evaluating the Q-function of every vision procedure that
can be applied to the current data (based on its datatype) and selecting the procedure with the
highest Q-value.

It is important to note that the Q-function predicts the total reward that follows a procedure, not
just the immediate reward. For example, in the experiments described below, the immediate
reward for resegmenting an ROI is zero, since the segmentation procedure returns a 2-D contour
while the training signal is given in terms of ROIs. Nonetheless, there can be a delayed reward
for resegmenting an ROI, since the resulting contour can be transformed into another ROI
through the Generalized Hough Transform procedure. The Q-function for the segmentation
procedure predicts this delayed reward, not just the immediate reward from the segmentation
procedure.

4.3) Off-line Learning

The control and artificial intelligence literatures contain many techniques for learning optimal Q-
functions for control problems with discrete state spaces. If the transition probabilities
associated with the actions are known (a so-called process model), dynamic programming can be
used to estimate Q-values and produce an optimal control strategy. In the absence of a process
model, reinforcement learning (most notably the temporal difference [Sutton, 1988] and Q-
learning [Watkins, 1989] algorithms) have been shown to converge to optimal policies in a finite
number of steps.

Unfortunately, the object recognition control problem, as defined here, depends on a continuous,
rather than discrete, state space. Tesauro [Tesauro, 1995] and Zhang & Dietterich [Zhang, 1995]
have shown empirically that neural nets can approximate Q-functions for continuous feature
spaces within a reinforcement learning system and still produce good control policies.
Unfortunately, their method required hundreds of thousands of training cycles to converge.
ADORE has a sequence of continuous feature spaces, one for each data representation (images,
ROIs, contours, etc.). This requires getting a sequence of neural nets to converge on a control
policy. Although theoretically possible, we did not succeed in making this work. .

Instead, we train Q-functions by optimistically assuming that the best control policy will always
select the action that creates the highest possible reward for every data token. Strictly speaking,
this assumption is not always true: a control policy maps points in feature space onto actions, and
it is possible for two different tokens to have the same feature measurements and yet have
different "optimal" actions. Nonetheless, the optimistic assumption is usually true, and it breaks
the dependence between Q-functions, allowing each neural net to be trained separately.

In particular, we approximate Q-functions by training backpropagation neural networks. The
training samples are data tokens extracted from the training images. For each training sample,
we apply all possible sequences of procedures, in order to determine which procedure yields the
maximum reward. A neural network is trained for each vision procedure using the data features
as input and the maximum reward from the data created by the vision procedure as the output. In
this way, the neural net leams to approximate the future reward from an action under the
optimistic control assumption.

4.4) Bagging

One aspect of this formulation of the object recognition problem is that it requires highly
accurate function approximation if the control policy is to be optimal. In order to maximize the

accuracy of our neural nets, we turned to a new technique from the machine learning community
called bootstrap aggregation, or bagging. The approach was originally developed by Breunan
[94], and is similar to work by Dietterich on improving non-parametric classification [Diettencn
& Bakiri 95, Kong & Dietterich 95 & 97] (see also [Heath, et al 93, Kwok & Carter 90]). The
basic idea is to randomly subsample the training set and train multiple function approximate
from these subsampled sets. The aggregated or "bagged" predictor is then the average of the
predictions for a sample.

Statistically bagging is a theoretically sound technique that reduces prediction error by reducing
the variance component of the error. (The bias error is unchanged.) This technique has not been
widely used in computer vision. In [Draper & Baek 98] we were able to show that bagging
produced an even larger increase in accuracy for our computer vision control problem than had
been reported by Breiman for other tasks. More importantly, as part of this project we were able
to show both theoretically and in practice that if you weight each component network by the
inverse of its mean squared error (MSE) on a validation training set, men the variance error in
the bagged predictor is reduced ever further. (This original contribution has been submitted to
IEEE Transactions on Pattern Analysis and Machine Intelligence.)

5. Experiments

To test ADORE in a tightly controlled domain, we trained it to recognize styles of houses in
aerial images such as the one in Figure 2. In the first experiment, the goal was to find duplexes
of the type shown in Figure 3. The training signal is a bitmap that shows the position and
orientation of the duplexes in the training images; Figure 4 shows the training signal matching
the image shown in Figure 2. The reward function used to evaluate hypotheses during training is
the size of the pixel-wise intersection of the hypothesis and the training signal, divided by the
size of the union. This evaluation function ranges from one (perfect overlap) to zero (no
overlap).

Figure 2: A nadir-view aerial image of the residential section of Fort Hood, TX.

Figure 3: A Duplex

Figure 4: The training signal for Duplexes for the training image shown in Figure 2

5.1) The Vision Procedure Library

The vision procedure library contains 10 2-D vision procedures, as depicted in Figure 5, many of
which are derived from ATR routines. Three of the procedures produce likelihood images (with
orientation information) from intensity images and a template2. The rotation-free correlation
procedure [Ravela, 1996] correlates the template at each position in the image by first rotating
the template until the direction of the edge at the center of the template corresponds to the edge
direction at the center of the image window. The TAStat procedure is a modification of the
algorithm in [Nguyen, 1990]. For every image window it also rotates a mask of the object until
it aligns with the local edge data, and then measures the difference between the intensity
distributions of the pixels inside and outside of the mask. The greater the difference between the
intensity distributions, the more likely the mask matches an object at that location and orientation
in the image. Finally, the probing procedure also uses edge information to rotate the template for
each image window, and then samples pairs of pixels in the image window, looking for edges
that match the location of edges in the template.

2 In all of our experiments, we assume that a template of the object is available.

10

GHT
Contour ROI+

Rot Free
Correlation

Probing

Peak
Detection

Segmentation

Source
Image

Likelihood
Image

TAStat
Line

Segments
LiME

Figure 5: An iconic depiction of ADORE's current vision procedure library. The boxes
represent intermediate image representations, such as likelihood images, image contours or
«regions of interest" (image chips with masks). Depending on the quality of the photocopy,

dark boxes are generally gray-scale images. Note that the peak detection procedure
produces on the order of 20 ROIs each time it is called.

Regions of interest (ROIs) are chips from the original image that are hypothesized to correspond
to object instances; each ROI also has a mask that details the hypothesized position and
orientation of the object. ROIs can be extracted from likelihood images using a peak detection
procedure, which finds the top N peaks in a likelihood image above a threshold. For these
experiments, the peak detection procedure was parameterized to extract a maximum of 20 peaks
from each likelihood image.

Five procedures can be applied to any ROI. Two of these actions are the special actions
mentioned in Section 4.1, accept and reject. Accept and reject are terminal actions that end the
recognition process. The other three options are: 1) an active contour procedure [Kass, 1988J
that modifies the outline of an ROI mask until the contour lies along edges m the original image;
2) a segmentation procedure [Comaniciu, 1997] that extracts the boundary of a new region (as a
2-D contour) within the image chip; or 3) a straight line extraction procedure [Bums, 1986J.

11

A Generalized Hough Transform procedure [Ballard, 1981] matches 2-D image contours to the
contour of a template, thus creating a new ROI. A symbolic line matching procedure (LiME;
[Beveridge, 1997]) finds the rotation, translation and scale that maps template (model) lines onto
image lines, again producing a ROI. It should be noted that LiME transforms hypotheses in
scale as well as rotation and translation, which puts it at a disadvantage in this fixed-scale
domain.

5.2) Finding Duplexes

To test the system's ability to learn duplex recognition strategies, we performed N-fold cross-
validation on the set of eight Fort Hood images. In other words, we divided the data into seven
training images and one test image, trained ADORE on seven training images, and then
evaluated the resulting strategy on the test image. We repeated this process eight times, each
time using a different image as the test image. All the results presented in this paper are from
evaluations of the test image.

Figure 6 shows the results of two tests, with the ROIs extracted by ADORE overlaid in red on
top of the test image. As a crude measure of success, ADORE found 21 out of 22 duplexes,
while producing six false positives. The only duplex not found by ADORE can be seen in the
image on the right of Figure 6- it is the duplex that is half off the bottom right-hand corner of the
image. Every duplex that lies completely inside an image was recognized. (The right side of
Figure 6 also shows one false positive.)

Figure 6: Duplexes extracted from two images. In the image on the left, all three duplexes
were found. On the right image, a false positive appears on the upper right side. Also, the
half-visible duplex to the bottom right was the only instance missed during testing - and
only half of that duplex lies inside the image.

Analyzing ADORE in terms of false positives and false negatives is misleading. Much of the
benefit of ADORE's dynamic strategies lies in its ability to refine imperfect hypotheses, not just
make yes/no decisions. ADORE maximizes its reward function by creating the best hypotheses
possible, given the procedure library. Table 1 gives a quantitative measure of ADORE's
success. The left-most entry in Table 1 gives the average reward across all 22 positive duplex
instances from the optimal strategy, where the optimal strategy is determined by trying all
sequences of procedures and taking the best result. The second entry gives the average reward
generated by the strategy learned by ADORE. As further points of comparison: the third entry in

12

Table 1 gives the average reward for duplex instances if no further processing is applied after
hypotheses are generated; the fourth entry gives the average reward if every duplex ROI is
segmented and the Generalized Hough Transform is used to reposition the ROI in terms of the
region boundary; the fifth entry gives the average reward if the active contour procedure is
applied (followed by the Generalized Hough Transform); and the sixth entry is the average
reward if lines are extracted from hypotheses, followed by the LiME symbolic matcher.

Table 1. Comparison between the optimal policy, the policy learned by ADORE, and the
four best fixed policies. The first row considers only positive instances; the second includes
a penalty of-1 for each false positive. Note that there are 24 object instances.

Optimal
Policy

ADORE
Policy

Avg.
Reward

0.8991 0.8803

Fixed:
Accept or

Reject

Fixed:
Segment

Fixed:
Active

Contours

Fixed:
Line

Extraction

0.7893 0.8653 0.7775 0.1807

Two conclusions can be drawn from Table 1. First, the strategy learned by ADORE for this task
is within about 98 percent of optimal. Second, the dynamic strategy learned by ADORE,
although not perfect, is better than any fixed sequence of actions. (The best fixed sequence of
actions is to always segment ROIs and apply the Generalized Hough Transform.) This implies
that dynamic strategies are worth learning.

5.3) Finding Smaller Houses

Having succeeded in finding a good strategy for finding duplexes, we expected to easily repeat
the process for other styles of houses. Indeed, we expected the resulting policies to be very
similar to the duplex policy; therefore, we repeated the experiment using the same methodology
as above but with the house styles shown in Figure 7.

To our dismay. ADORE identified 18 of 19 instances of the house style A but generated 22 false
poshes Combining the results from house styles A through D, ADORE found 47 out of 61
instances, while generating 85 false positives.

Figure 7: Templates of four other styles of houses (called A through D going left to right).

Why is this problem harder than finding duplexes? The most critical control decision m this
domain comes after ROIs are extracted from likelihood images. At this point, ADORE has a
choice of five procedures: segmentation, active contours, line extraction, accept or reject. Ut

13

these five, line extraction rums out to never be the optimal choice, but the four other options are
optimal for some ROIs.

The control policy must select the optimal action based on features of the ROIs. By inspecting
the weights of the neural net Q-functions trained for duplex recognition, we discovered that two
of the eleven features dominated the control decision. The most important feature measures the
average image edge strength along the boundary of the ROI. The second most important feature
measures the percent of pixels outside the mask of the ROI that have roughly the same intensity
value as pixels under the mask. (We informally refer to these as "missing" pixels, since their
intensities suggest that they were accidentally left out of the hypothesis.)

Based mostly on these two features, ADORE learns a strategy for picking the next procedure. If
we interpret the behavior of the Q-functions in terms of these two features, we can describe the
control strategy learned by ADORE as follows (see Figure 8): ROIs with very high boundary
edge strength and very few "missing" pixels should be accepted as is. (The points in Figure 8
correspond to training samples, color-coded in terms of the optimal action for each ROI. Dark
blue points correspond to ROIs that receive approximately the same reward whether segmented
or accepted as is.) If the edge strength is less high but relatively few pixels are "missing," then
the ROI should be segmented. Although many false hypotheses - shown in yellow in Figure 8
because the optimal action is to reject them - are segmented according to this rule, there is
another control decision after segmentation and the Generalized Hough Transform, where false
hypotheses can be rejected and true ones accepted. This decision is made easier by the result of
the segmentation procedure. There also is one small spot in the feature space where the active
contour procedure is optimal. This is harder to explain and may result from the training set being
a little too small. Finally, if the missing pixel count is high or the edge strength is low, reject the
ROI. The solid boundaries in Figure 8 approximate our interpretation of the control policy's
decision boundaries.

If we look at the edge strength feature for the other house recognition task, we find that it does
not discriminate as well. It turns out that if you overlay the four templates shown in Figure 8 on
top of each other, most of the boundaries are aligned. As a result, if a ROI for style A is
incorrectly placed over an instance of styles B, C, or D, the edge's strength is still very high.
(The same is true for ROIs of style B, C, and D). As a result, when looking for one style of
house, false hypotheses created by instances of the other style have high edge strength, so the
feature is not very discriminating. As a result, ADORE has a harder time learning a strategy that
can distinguish between true instances and false ones, with the result that many more false
hypotheses are created. In effect, the difference in feature space between one style and the next
is too small to reliably distinguish between them.

14

1.4

12

OB

OB

0.4

02

Reject
Segmentation
Snake
Submit
Seg mentation/Submit

*:
+ ;

.. ..I.* v.

* :

t
*:

* *
Q 4 %. .****

i

20 30 40 50 60 70 SO 90 100 110 120

Figure 8: ROIs plotted in two dimensions of the eleven dimensional feature space. The
color of the ROI point indicates the optimal control decision for that ROL (Blue ROIs
receive roughly the same reward whether they are submitted as is or refined through
segmentation.) The ellipses correspond to our interpretation of the decision boundaries
learned by the neural networks.

6. Conclusion

Under this contract, we built a prototype adaptive object recognition system that is capable of
learning good obj ect-specific recognition strategies when features of the intermediate data
representations provide enough information to base intelligent control decisions on. Using this
prototype, we successfully learned a dynamic control policy that outperforms any fixed strategy
for a recognition task. Using the same prototype, we were then able to recognize other objects,
some of which were similar to the first object type in the sense of being building designs, one of
which was completely unrelated (the maintenance rails from the motor pool of Ft. Hood). In so
doing, we met and exceeded our target milestones for the first year of the project.

At the same time, we have identified the primary weakness of our system. Without sufficiently
discriminating features, it is not possible to learn effective control policies. (It should be noted
that under these conditions, it is not possible to create effective control policies by hand, either.)
We had just begun to look at the issue of dynamically selecting token features as well as vision
procedures, and were beginning to implement a feature selection system based on the work of

15

[Jain & Zongker 97, Almuallim & Dietterich 92, Pudil, Novovicova & Kittler 94, Baker, Nayar
and Murase 98, Vafaie & DeJong 93, Koller & Sahami 96].

16

7. Bibliography

Almuallim, H. and T. Dietterich, 1992. "Efficient Algorithms for Identifying Relevant
Features," Canadian Conference on Artificial Intelligence.

Ballard, D., 1981. "Generalizing the Hough Transform to Detect Arbitrary Shapes," PR,

13(2):11-122.

Baker, S., S. Nayar, and H. Murase, 1998. " Parametric Feature Detection," International
Journal of Computer Vision, 27(l):27-50.

Beveridge, R., 1997. LiME Users Guide. Technical report 97-22, Colorado State University
Computer Science Department.

Burns, B., A. Hanson, and E. Riseman, 1986. "Extracting Straight Lines," PAMI 8(4):425-455.

Comaniciu, D. and P. Meer, 1997. "Robust Analysis of Feature Space: Color Image
Segmentation," CVPR, pp. 750-755.

Draper, B., R. Collins, J. Brolio, A. Hanson, and E. Riseman, 1989. "The Schema System,"
IJCV, 2(2):209-250.

Draper, B., 1996. "Modelling Object Recognition as a Markov Decision Process," ICPR, D95-

99.

Draper, B. and K. Baek, 1998. "Bagging in Computer Vision," CVPR, pp. 144-149.

Kass, M., A. Witken, and D. Terzopoulis, 1988. "Snakes: Active Contour Models." IJCV

1(4):321-331.

Koller, D. and M. Sahami, 1996. "Toward Optimal Feature Selection," International
Conference on Machine Learning, Bari, Italy.

Maloof, M., P. Langley, S. Sage, and T. Binford, 1997. "Learning to Detect Rooftops in Aerial

Imag'es,"';W: 835-846.

Mundy, J., 1995. "The Image Understanding Environment Program," IEEE Expert, 10(6):64-73.

Nguyen, D., 1990. An Iterative Technique for Target Detection and Segmentation in IR Imaging
Systems, Technical Report, Center for Night Vision and Electro-Optics.

Pudil, P., J. Novovicova, and J. Kittler, 1994. "Floating Search Methods in Feature Selection,"
Pattern Recognition Letters, 15:1119-1125.

17

Peng, J. and B. Bhanu, 1998. "Closed-Loop Object Recognition using Reinforcement Learning,"
PAMI 20(2):\39-\54.

Rasure, J. and S. Kubica, 1994. "The KHOROS Application Development Environment," In
Experimental Environments for Computer Vision, World Scientific, New Jersey.

Ravela, S., B. Draper, J. Lim, and R. Weiss, 1996. "Tracking Object Motion Across Aspect
Changes for Augmented Reality," IUW, pp. 1345-1352.

Sutton, R., 1988. "Learning to Predict by the Methods of Temporal Differences," ML, 3(9):9-44.

Tesauro, G., 1995. "Temporal Difference Learning and TD-Gammon," CACM, 38(3):58-68.

Vafaie, H. and K. De Jong, 1993. "Robust Feature Selection Algorithms," International
Conference on Tools with AI, Boston.

Watkins, C, 1989. Learning from Delayed rewards, Ph.D. thesis, Cambridge University.

Zhang, W. and T. Dietterich, 1995. "A Reinforcement Learning Approach to Job-Shop
Scheduling," IJCAI.

18

Appendix A: "IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 1998"

19

Bagging in Computer Vision

Bruce A. Draper

Department of Computer Science
Colorado State University
Fort Collins, CO. 80523
draper@cs.colostate.edu

Kyungim Baek

Department of Computer Science
Colorado State University
Fort Collins, CO. 80523

baek@cs. colostate. edu

Abstract
Previous research has shown that aggregated predic-

tors improve the performance of non-parametric func-
tion approximation techniques. This paper presents
the results of applying aggregated predictors to a com-
puter vision problem, and shows that the method of
bagging significantly improves performance. In fact,
the results are better than those previously reported on
other domains. This paper explains this performance
in terms of the variance and bias.

1 Introduction
Function approximation and classification are ubiq-

uitous problems in computer vision. The pattern
recognition task of mapping from a set of (not nec-
essarily independent) features to a predicted function
value or label rises in object recognition, target recog-
nition, visual navigation, and almost every other ap-
plication of computer vision. For many years, the
traditional approach to this problem was to estimate
the parameters of the feature distributions, and apply
maximum likelihood classification or related approx-
imation techniques to predict labels/values. Unfor-
tunately, this approach often performs poorly in the
presence of unmodeled dependencies between features.

To counteract this problem, many researchers have
turned to non-parametric techniques such as neural
networks, decision trees, and nearest neighbor classi-
fiers. While these techniques often provide improved
results on computer vision data sets, they are all too
often "black boxes" to the researchers who use them.
As a result, many researchers do not know how to op-
timize the performance of these techniques short of
extensive trial-and-error.

This paper presents a technique called bagging1 for
improving the performance of non-parametric func-

1 Bagging is an acronym for bootstrap aggregating.

tion approximation techniques. This approach was
developed by Breiman [1], and is similar to work by
Dietterich on improving non-parametric classification
[2,4,5]. (See also [3, 6].) The basic idea is to randomly
sample the training set and produce multiple function
approximations. The aggregated or "bagged" predic-
tor is then the average of the component predictions
on a given sample. The non-obvious result is that the
bagged predictor is significantly better than any of the
component predictors.

Since results from other domains do not always ap-
ply in computer vision, this paper applies bagging to
the task of evaluating image regions via neural net-
works. Our results prove to be consistent with - if not
better than - those presented by Breiman [1]. In addi-
tion, we predict which tasks will benefit from bagging
by measuring the variance and bias of the component
non-parametric function approximations (predictors).

2 Bagging
The basic idea behind bagging is simple: train mul-

tiple function approximations and average their re-
sults. To clearly explain when and why this works,
however, we have to get a little more formal. A func-
tion approximation task can be defined in terms of a
set W:

W = {(Fn,j/„),n=l,...,oo},

where Fn is a feature vector describing a data instance,
and 3/„ is the function value associated with instance n.
The goal is to learn a function approximation ip such
that yn « y'n = ip(Fn) from a training set T C W.

Training algorithms (such as backpropagation)
for non-parametric function approximation can be
thought of as processes that map training sets onto
functions (i.e. T — <p). They are typically used to
train a single approximation ip = Train{T). In bag-
ging, however, T is randomly subsampled (with re-
placement) to produce M subsets TM, and each of

20

these subsets is used to train a function approxima-
tion ifM = Train(TM)- The bagged approximation
can then be written as:

VbagVti) - (VJM Wk)

where

where

Wk = l
MSE(<pk)

(In other words, <Pbag{Fi) is the weighted average of
VM(Fi)-) The weighting term, WM, gives more weight
to predictors that have lower overall mean squared
error (MSE) than others. (Breiman does not use a
weighting term, but we found that it significantly im-
proved performance.)

There are two bases for arguing the <p(,ap should be
a better approximation than ip = Train(T). The first
assumes that the training algorithm is unstable, in the
sense that a small change to the training set TM results
in a large change to approximation ifM ■ (This assump-
tion is true for backpropagation, and Breiman argues
that it is true for decision tree inference algorithms
as well [1].) In this case, the function approximations
PI,—,<PM are largely independent of each other. If
they are also unbiased, then <£i(Fj),..., <PM{Fi) can be
thought of as M independent samples drawn from a
distribution whose mean is yt. As a result, the ex-
pected value of <pba9{Fi) is yt, even if the errors in the
individual approximations p are large.

The second argument says that most training algo-
rithms get caught in local optima, and as result pro-
duce approximations <p that are accurate over part but
not all of the feature space. Once again, the differ-
ence among the subsampled training sets TM suggest
that the approximations <PM

wiU correspond to dif-
ferent local optima. If each </>M is accurate for most
of the feature space, then the majority of estimates
y'iM = VM{F{) will accurately reflect y*. Moreover,
we can once again assume that the outliers will be un-
biased, so their expected value is zero. As a result, the
bagged predictor should be accurate across the entire
feature space, or at least a larger portion of the space
than any component <PM.

Both of these arguments can be cast in terms of
variance and bias. In general, bias is the tendency of
an approximation to overestimate or underestimate,
while variance is (informally) the noise in the estima-
tion process. In regression, it is a well-known theory
that the expected squared error of an approximation
algorithm on test data can be decomposed into bias
and variance terms [7]:

Error{Fi) = Bias2{Fi) + Var{Fi)

and

Bias{Fi) = yi -yi

Var(Fi) = ET(Ti'- fHFi))2

V? = Er(y<)

The general result of bagging is to reduce the vari-
ance, so that the error of an aggregate approximation
approaches the bias error as the number of component
approximations approaches infinity. If the component
predictors are unbiased (which they should be over-
all, but may not be for specific samples F{), then the
aggregate error approaches zero.

3 The Test Problem
Our test case evaluates bagging on a region evalua-

tion problem. As part of another project, we have an
object recognition system that generates hypotheses
in the form of labeled image regions. Working in an
aerial image domain, we collected a data set of 3,374
house hypotheses, each represented by a mask and a
corresponding image chip. The task is to estimate the
quality of hypotheses from features describing the re-
gions.

Figure 1: Image chips(left) and masks(right) for two
house hypotheses. The top hypothesis gets a score
of .87(the inclusion of the driveway is most of the
penalty), while the lower hypothesis scores only .15
since it barely overlaps a house.

A total of twenty features are used to describe hy-
pothesized regions. The features themselves are not
unusual. They include shape features, size features,
texture features, and brightness features. One feature

21

14

12

10

111
co 8

x10"

MSE of bagged preditor
MSE of each net
average MSE of each net

10 15 20
number of nets

25 30 35 40

Figure 2: Mean Squared Error of Forty Nets vs. Bagged(Aggregated) Prediction

MSE average
MSE min(best)
MSE max(worst)
Standard Deviation

Individual Nets
0.0083
0.0063
0.0129
0.0014

Bagged Net : 15 nets (decrease)
0.0036 (56.6%)
0.0031 (50.8%)
0.0040 (69.0%)

0.0002

Bagged Net : 40 nets (decrease)
0.0034 (58.8%)
0.0034 (45.8%)
0.0034 (73.6%)

Figure 3: MSE Comparison of individual nets and bagged net. The 3rd column is the result of bagging 100 times
with 15 nets randomly selected from 40 nets in each time.

is a shadow measure that relies on knowing the sun an-
gle. In many respects, this task is typical of function
approximation tasks that arise in computer vision.

Part of what makes this task difficult is that the
answer is not binary. Most of the hypotheses are good
to the extent that they overlap the true position of a
house, but they do not match it exactly. The quality
of a hypothesis depends on how closely it matches the
ground truth data, and is measured according to:

\HnT\
\HvT\

where H is the set of hypothesized pixels, and T is
the true set of house pixels. (Note that this function -
the size of the intersection of the pixel sets divided by
the size of their union - is bounded between zero and
one.) Figure 3 shows two hypotheses, one with a high

score (.87) because it matches the true house region
closely, the other with a lower score (.15).

4 Results
The goal of this experiment is to test whether bag-

ging improves accuracy in computer vision problems,
and if the improvement is in line with the results
reported in [1]. Secondarily, we are also interested
in whether the reason for the improvement (if any)
matches the explanation given in Section 2.

We tested the bagging technique using backpropa-
gation to train fully-connected neural networks with
30 hidden units, a sigmoidal squashing function and
a momentum term of 0. In order to test the bagging
technique, we split our total database of 3,374 samples
into a training set T of 2,874 samples and a test set U
of the remaining 500 samples. We then trained a total

22

10 15 20 25
numb«r o* nnu

30 35 40

./^— : : =

15 20

Figure 4: Cumulative Variance Figure 6: Variance of Bagged net

0.05

0.04 -

0.03

number ol nils

0.01

0.009

0.008

0.007

5 0.006

S 0.005
"5 «
5 0OO4

0.003

0.002

0.001

Figure 5: Cumulative Bias

15 20 25
number ol rats

Figure 7: Bias Error

of forty networks, where network ipi was training by
randomly selecting 2,000 samples from T to form T,,
and then applying backpropagation to train network
<Pi over data set T*.

Figure 2 shows the result of applying these networks
to the test set U, with and without bagging. The
dash-dot(-.-) line shows the mean squared error(MSE)
of the test set on each of the forty nets. The solid
line is the MSEs that result from bagging, so that
for example the MSE of bagging the first five nets is
0.0048, while the MSE from bagging ten nets is 0.0038.
(Remember that the function being approximated has
a range from 0 to 1.) For comparison's sake, the dotted
line(..) is the running average of the MSEs of the nets.

The immediate conclusion from Figure 2 is that
bagging leads to a striking improvement. The MSEs of
the forty individual nets ranged from 0.0063 to 0.0129
with an average of 0.0083, while the MSE from bag-
ging the forty networks is 0.0034 (Figure 3). Bagging
therefore leads to an improvement of 58.8% over the
average performance of the individual nets and an im-
provement of 45.8% over the best of the component
nets. In addition, although bagging is clearly more
expensive than other approaches (since it trains mul-
tiple nets), from Figure 2 we see significant improve-
ment from bagging as few as five neural nets, and we
see almost all of our improvement by the time fifteen
nets have been bagged. The second column of Figure 3

23

umplswitht

hightr vwune» -
highMt virunra •
highMi viriane* -

Figure 8: Prediction errors for the three samples with the highest variance across the first twenty nets(net
#0 net #19). The variance is clearly visible in the different errors produced by each net, whüe the average

prediction(net #20) for each sample is reasonable.

shows it more clearly. The values have been drawn by
bagging 15 randomly selected nets 100 times. The av-
erage error shows that the performance is very close
to the results gained by bagging 40 nets.

Not only are these results consistent with those re-
ported in [1], the improvement of 58.8% ranks it as the
best. (Breiman's best was an improvement of 47% on
the Heart dataset at the UCI dataset repository.) In
the test reported here, the random sampling was done
without replacement. However, the results of experi-
ments with replacement are not much different from
previous test. Although the MSE is slightly worse
(ranging from 0.0075 to 0.0174 for individual nets,
0.0044 for bagging 40 nets), the average decrease in
error is 64.2%.

"Whether this is because of the domain, because
we bagged neural nets as opposed to decision trees
(as Breiman did), or because we added the weighting
term, we cannot say. Either way, bagging is clearly
beneficial in this domain. But does the reason for its
success lie in the explanations posited in Section 2?

Since we observed a striking improvement by bag-
ging, if the explanations from Section 2 hold, two other
predictions should be met: 1) the bias of the neural
nets (viewed as a set) should be low and the variance
of the neural nets should be high. 2) bagging reduces

most of the variance, so the error of bagged net should
approach the bias error. Figures 4 through 7 do in-
deed show this to be true, which explains why there
was so much improvement as a result of bagging. Over
forty nets, the variance is almost 0.005, while the bias
is 0.0015 (Figures 4 and 5). In Figure 6, we see that
the variance of the bagged net is almost zero and the
bias error (average of squared bias of each sample over
multiple nets) in Figure 7 is almost same as the MSE
of bagged net in Figure 2.

Finally, one intuitive way to look at these results is
to plot the three test samples with the highest vari-
ance. As shown in Figure 8, all of these samples were
estimated with reasonable accuracy by most of the
nets. (We show just the first twenty nets and the
bagged predictor in Figure 8, while the vertical di-
mension is the error between the true and predicted
value.) Certain nets did very poorly on certain sam-
ples, however. For example, net #18 had an error
of almost 0.9 (in a range from 0 to 1) on one sam-
ple. (Nets #13 and #19 also had trouble with this
sample.) Another sample proved problematic for net
#7, with an error of almost 0.4. Because the aggre-
gate predictor averages across all forty nets, however,
these occasional failures - which occur for every net on
at least a few samples - are replaced by more reliable

24

estimates, resulting in an aggregate predictor with far
lower error than any of its components.

5 Conclusion
Aggregate or "bagged" predictors work as well or

possibly even better on a typical computer vision
dataset than they do on the non-visual UCI test suites
for which results have previously been reported.

References
[1] L. Breiman, Bagging Predictors. Technical Report

No. 421, Dept. of Statistics, University of Califor-
nia(Berkeley). Sept. 1994.

[2] T. Dietterich and G. Bakiri, "Solving Multiclass
Learning Problems via Error-Correcting Output
Codes," Journal of Artificial Intelligence Research,
2:263-286(1995).

[3] D. Heath, S. Kasif, and S. Salzberg, "K-dt: a
Multi-tree Learning Method," 2nd Workshop on
Multistrategy Learning, Chambery, France, 1993,
pp.1002-1007.

[4] E.B. Kong and T. Dietterich, Why error-correcting
output coding works with decision trees. Technical
Report, Dept. of Computer Science, Oregon State
University (Corvalis), 1995.

[5] E.B. Kong and T. Dietterich, "Probability Es-
timation via Error-Correcting Output Coding,"
IASTED Conference on Artificial Intelligence and
Soft Computing, Banff, Canada, 1997.

[6] H. Kwok and C. Carter, "Multiple Decision
Trees," in Uncertainty in Artificial Intelligence
4, Shachter, Levitt, Kanal and Lemmer (eds.),
North-Holland, 1990, pp.327-335.

[7] E.B. Kong and T. Dietterich, "Error-Correcting
Output Corrects Bias and Variance," Machine
Learning: Proceedings of the 12th International
Conference, pp.313-321.

25

Appendix B: "International Conference on Vision Systems, 1999"
(a longer version will appear in Videre)

26

1) Introduction

As the field of computer vision matures, fewer and fewer vision systems are built "from scratch".

Instead, computer vision systems are assembled out of standard procedures, including (but my no

means limited to): image smoothing / image enhancement, edge and corner extraction, region

segmentation, straight line and curve extraction, grouping, symbolic model matching (including

Hausdorf matching, key feature matching, and heuristic search), appearance matching, pose

determination, and depth from stereo, motion or focus. Separately, each of these procedures

addresses a part of the computer vision problem. Sequenced together, they form end-to-end

vision systems that perform specific tasks.

To help users build end-to-end systems, computer vision software environments provide

libraries of image processing and computer vision procedures, and graphical user

interfaces to sequence them together. In Khoros [Rasure, 1994 #25], programmers build

applications by selecting procedures (called "glyphs") from a menu and graphically

connecting the output of one procedure to the input of another. Unfortunately, the

Khoros procedure library is mostly limited to 2D image processing routines; high-level

grouping and matching procedures, for example, are missing. CVIPtools [Umbaugh,

1998 #30] is another software environment intended primarily for academic use.

Although it also focuses mostly on image processing, it includes a slightly larger set of

low-level vision procedures for tasks such as region segmentation and straight line

extraction. The Image Understanding Environment (IUE) [Mundy, 1995 #21] has a more

sophisticated procedure library for both 2D and 3D computer vision. The IUE is still

under development, but a preliminary version is freely available.

27

Software tools such as Khoros, CVIPtools and the IUE make it easier for programmers to form

and test sequences of vision procedures. Unfortunately, they do not help programmers with the

underlying problem of how to select procedures for a specific task. Programmers are left to

choose vision procedures based on intuition, and to refine sequences of procedures by trial and

error.

The goal of the Adaptive Object Recognition (ADORE) project is to provide a theoretically sound

mechanism for dynamically selecting vision procedures based on the task and the current state of

the interpretation. We eventually seek to build a system that can adapt to any recognition task by

dynamically selecting actions from among dozens (if not hundreds) of vision procedures. Not

surprisingly, this ambitious goal exceeds our current grasp. This paper describes an initial

prototype of ADORE that learns to find houses in aerial images using a library often vision

procedures. While this system is clearly short of our ultimate goal, it is an example of an end-to-

end system that adapts by learning to dynamically control vision procedures. This paper

describes two experiments with the prototype version of ADORE - one in which ADORE

succeeds in finding a good object recognition strategy, and one in which it fails.

2) Examples of Static and Dynamic Control

Before describing ADORE in detail, let us first illustrate the type of problem it is supposed to

solve. Figure 1 shows a nadir-view aerial image. The task is to find instances of specific styles

of houses, such as the duplex in Figure 2. To achieve this goal, ADORE is given access to ten

vision procedures and a template of the duplex. (Descriptions of all ten procedures can be found

in Section 5.1.) ADORE is also given training images and a training signal that gives the position

28

and orientation of each duplex. ADORE's role is to dynamically select and execute procedures

so as to produce duplex (and only duplex) hypotheses.

Figure 1: A nadir-view aerial image of the residential section of Fort Hood, TX

ADORE finds duplexes by learning a control strategy that selects a vision procedure at each

processing step. For example, ADORE's vision procedure library currently contains three

procedures for producing regions of interest (ROIs) from images: a rotation-free correlation

procedure, a statistical distribution test, and a probing routine. All three can be used to generate

duplex hypotheses, but ADORE learns from the training data that for this problem - where the

duplexes are almost identical to each other, and lighting differences and perspective effects are

minimal - pixel-level correlation outperforms the other two procedures. ADORE therefore learns

a recognition strategy that begins with correlation.

The next step is more complex. Figure 3 shows three ROIs produced by correlation. The ROI on

the left of Figure 3 matches the position and orientation of a duplex very well. In fact, none of

the procedures in the procedure library can improve this hypothesis, so the best action for

29

ADORE to take is to accept it as is. The ROI on the right in Figure 3, on the other hand, does not

correspond to any duplex. The best action here is to reject it.

Figure 2: A Duplex

Figure 3: Three hypothesized regions of interest (ROIs). Although all three were created the same
way, the best action for the one on the left is to accept it, while the one in the middle should be
refined via the segmentation procedure, and the one on the right should be rejected.

The ROI in the middle of Figure 3, on the other hand, is more interesting. This ROI roughly

matches a duplex, but the position and orientation of the duplex are skewed, probably because the

duplex is partially occluded in the image . In this case, the best procedure is to refine the

hypothesis by resegmenting the image chip (using [Comaniciu, 1997 #10]) and then applying a

Generalized Hough Transform [Ballard, 1981 #5] to align the template with the extracted region

boundary. Figure 4 shows the resulting hypothesis after these two procedures are applied.

Figure 4: Refined ROI for middle hypothesis from Figure 3.

30

Examples like the ones in Figure 3 demonstrate the importance of dynamic control decisions. In

all three cases, the first procedure was the same: correlation. The choice of the next procedure,

however, depended on the quality of the ROI produced by the previous step. In general, control

strategies should choose procedures based not only on static properties of the object class and

image domain, but based also on data produced by previous procedures.

3) Related Work

At a theoretical level, researchers argued for specialized recognition strategies built from reusable

low-level components long before the appearance of software support tools like Khoros. As far

back as the 1970s, Arbib argued from psychological evidence for specialized visual "schemas"

built from reusable components [Arbib, 1972 #4]. Ullman developed a similar theory, in which

primitive "visual routines" are combined to form specialized recognition strategies [Ullman, 1984

#29]. Later, Aloimonos [Aliomonos, 1990 #2] and Ikeuchi & Hebert [Ikeuchi, 1990 #16] argued

for specialized recognition strategies made from primitive vision operations in the context of

visual robotics.

At a practical level, researchers have been building recognition systems with special-purpose

recognition strategies for twenty years. In the late '70s and early '80s, researchers built AI-style

production and blackboard systems that selected and sequenced vision procedures to achieve

specific tasks. Nagao & Matsuyama's production system for aerial image interpretation [Nagao,

1980 #22] was one of the first, and lead to several long-term development efforts, including

SPAM [McKeown, 1985 #20], VISIONS/SCHEMA [Draper, 1989 #11], SIGMA [Hwang, 1986

#15], PSEIKI [Andress, 1988 #3] and OCAPI [Clement, 1993 #9]. More recently, other

researchers [Chien, 1996 #35][Lansky, 1995 #36][Jiang, 1994 #17] have applied AI-style

31

planning technology to logically infer control decisions from a database describing the task and

the available procedures.

Unfortunately, knowledge-based systems are often ad-hoc. Researchers formulate rules for

selecting procedures based on their intuition, and refine these rules through trial and error. (See

[Draper, 1992 #12] for a description of the knowledge engineering process in object recognition)

As a result, there is no theoretical reason for believing that the control policies that emerge from

these heuristics are optimal or even good, nor is there any way to directly compare these systems

or evaluate their control policies.

Recently, researchers have tried to put the control of object recognition on a stronger theoretical

foundation using Bayes nets (e.g. TEA1 [Rimey, 1994 #33] and SUCCESSOR [Mann, 1996

#19]). Unfortunately, designing Bayes nets can itself become an ad-hoc knowledge engineering

process. Other researchers are trying to eliminate the knowledge acquisition bottleneck by

learning control policies from examples. Researchers at Honeywell used genetic algorithms to

learn target recognition strategies [Au, 1996 #1], while reinforcement learning has been used by

Draper to learn sequences of procedures [Draper, 1996 #13] and by Peng & Bhanu to learn

parameters for vision procedures [Peng, 1998 #24]. Maloof et. al. train classifiers to accept or

reject data instances between steps of a fixed sequence of procedures [Maloof, 1997 #18].

4) Object Recognition as a Supervised Learning Task

The goal of the adaptive object recognition (ADORE) project is to avoid knowledge engineering

by casting object recognition as a supervised learning task. Users train ADORE by providing

training images and training signals, where the training signal gives the desired output for the

32

training images. ADORE learns control strategies that dynamically select vision procedures in

order to recreate the training signal as closely as possible from the training images. This control

strategy can then be used to hypothesize new object instances in novel images.

To learn control strategies, ADORE models object recognition as a discrete control process. The

state of the system is determined by data produced by vision procedures. For example, the state

of the system might be a region of interest (ROI), a set of 2D line segments, or a 2D contour. The

actions are vision procedures that change the state of the system by producing new data from

current data. A control policy is a function that maps states onto actions. In the context of

ADORE, control policies map data onto vision procedures, thereby selecting the next action at

each step of the recognition process.

4.1) The ADORE prototype

At a systems level, ADORE is most easily thought of as two distinct components: a run-time

execution monitor that applies vision procedures to data, and an off-line learning system that

trains control policies.

4.1.1) The Execution Monitor

The execution monitor is a run-time loop that begins when an image is presented to the system.

On each cycle, it evaluates the control policy on the current data, thereby selecting a vision

procedure. It then applies the vision procedure to the current data, producing new data. This loop

continues until a vision procedure returns without producing any new data.

33

Of course, this simple description glosses over some important details. After every vision

procedure, the execution monitor measures features of the output data to be used in training

control policies. The execution monitor also measures the run-time of each procedure, to be used

as a component in the reward function if the goal is to train control policies that make tradeoffs

between time and accuracy. Finally, there are two special procedures - called accept and reject -

that return no data. The accept procedure signals that an object instance has been found; during

training, accepted data tokens are compared to the training signal and a reward or penalty is

generated. The reject procedure signals that the current data should be rejected; during training, it

always returns a reward of zero.

In the interests of generality, the execution monitor is independent of the vision procedure library.

Each vision procedure is an independent unix executable; a library file tells the execution monitor

the number and type of input arguments for each procedure, the number and type of output

arguments, and the unix pathname. As a result, vision procedures can be added or removed from

the system simply by editing the library file. Similarly, the execution monitor is independent of

particular data representations, since all data tokens are kept in files. For each data type, the

library file tells the execution monitor 1) the name of the data type (so the monitor can match data

tokens with arguments to vision procedures); 2) the number of features measured (for function

approximation - see below); and 3) the path of the unix executable for measuring features. Thus

new data types, like new vision procedures, can easily be added to the system.

4.1.2) Control Policies

The execution monitor is a control loop for applying vision procedures to data. The control

policy directs the execution monitor by selecting a vision procedure at each step. Since the

34

choice of vision procedure depends in part on the target object class and image domain, a

different control policy is learned for every object recognition task.

Control policies are functions that map data tokens (represented in terms of their features) onto

vision procedures. In order to learn sound control policies, object recognition is modeled as a

discrete control problem. In particular, the state of the system is always defined by the features of

the current data. The vision procedures are the discrete actions, and these actions are non-

deterministic in the sense that we cannot predict the features of the output based solely on the

features of its input.

To train a control policy, we train a Q-function for every vision procedure. In control theory, a

Q-function is a function that predicts the expected reward that will follow from applying a

specific action to the current state. For example, in ADORE we train a Q-function for predicting

the reward that will result from applying the segmentation procedure to an ROI, based on the

features of the ROI. We also train Q-functions for predicting the rewards that will follow from

applying the active contour procedure to an ROI and the correlation procedure from an image.

Control policies are implemented by evaluating the Q-function of every vision procedure that can

be applied to the current data (based on its datatype) and selecting the procedure with the highest

Q-value.

It is important to note that the Q-function predicts the total reward that follows a procedure, not

just the immediate reward. For example, in the experiments described below the immediate

reward for resegmenting an ROI is zero, since the segmentation procedure returns a 2D contour

while the training signal is given in terms of ROIs. Nonetheless, there can be a delayed reward

for resegmenting an ROI, since the resulting contour can be transformed into another ROI

through the Generalized Hough Transform procedure. The Q-function for the segmentation

35

procedure predicts this delayed reward, not just the immediate reward from the segmentation

procedure.

4.1.3) Off-line Learning

The control and artificial intelligence literatures contain many techniques for learning optimal Q-

functions for control problems with discrete state spaces. If the transition probabilities associated

with the actions are known (a so-called process model), dynamic programming can be used to

estimate Q-values and produce an optimal control strategy. In the absence of a process model,

reinforcement learning (most notably the temporal difference [Sutton, 1988 #27] and Q-leaming

[Watkins, 1989 #32] algorithms) have been shown to converge to optimal policies in a finite

number of steps.

Unfortunately, the object recognition control problem as defined here depends on a continuous,

rather than discrete, state space. Tesauro [Tesauro, 1995 #28] and Zhang & Dietterich [Zhang,

1995 #31] have shown empirically that neural nets can approximate Q-functions for continuous

feature spaces within a reinforcement learning systems and still produce good control policies.

Unfortunately, their method required hundreds of thousands of training cycles to converge.

ADORE has a sequence of continuous feature spaces, one for each data representation (images,

ROIs, contours, etc.). This requires getting a sequence of neural nets to converge on a control

policy. Although theoretically possible, we have not yet succeeded in making this work.

Instead, we train Q-functions by optimistically assuming that the best control policy will always

select the action that creates the highest possible reward for every data token. Strictly speaking,

this assumption is not always true: a control policy maps points in feature space onto actions, and

36

it is possible for two different tokens to have the same feature measurements and yet have

different "optimal" actions. Nonetheless, the optimistic assumption is usually true, and it breaks

the dependence between Q-functions, allowing each neural net to be trained separately.

In particular, we approximate Q-functions by training backpropagation neural networks. The

training samples are data tokens extracted from the training images. For each training sample, we

apply all possible sequences of procedures, in order to determine which procedure yields the

maximum reward . A neural network is trained for each vision procedures using the data features

as input and the maximum reward from the data created by the vision procedure as the output.. In

this way, the neural net learns to approximate the future reward from an action under the

optimistic control assumption. (Complicating the picture somewhat, we "bag" the neural nets to

reduce variance; see [Draper, 1998 #14].)

5) Experiments

To test ADORE in a tightly controlled domain, we trained it to recognize styles of houses in

aerial images like the one in Figure 1. In the first experiment, the goal is to find duplexes of the

type shown in Figure 2. The training signal is a bitmap that shows the position and orientation of

the duplexes in the training images; Figure 5 shows the training signal matching the image shown

in Figure 1. The reward function used to evaluate hypotheses during training is the size of the

pixel-wise intersection of the hypothesis and the training signal, divided by the size of the union.

This evaluation function ranges from one (perfect overlap) to zero (no overlap).

37

Figure 5: The training signal for Duplexes for the training image shown in Figure 1

The Vision Procedure Library

The vision procedure library contains ten 2D vision procedures, as depicted in Figure 6. Three of

the procedures produce likelihood images (with orientation information) from intensity images

and a template1. The rotation-free correlation procedure [Ravela, 1996 #26] correlates the

template at each position in the image by first rotating the template until the direction of the edge

at the center of the template corresponds to the edge direction at the center of the image window.

The TAStat procedure is a modification of the algorithm in [Nguyen, 1990 #23]. For every image

window it also rotates a mask of the object until it aligns with the local edge data, and then

measures the difference between the intensity distributions of the pixels inside and outside of the

mask. The greater the difference between the intensity distributions, the more likely the mask

matches an object at that location and orientation in the image. Finally, the probing procedure

also uses edge information to rotate the template for each image window, and then samples pairs

of pixels in the image window, looking for edges that match the location of edges in the template.

38

GHT
Contour i ROI+

Probing" Segment at ion
Rot. Free

Correlation

Burns Line
Segments

ROI+

Figure 6: A visual depiction of ADORE's current vision procedure library. Note that the peak
detection procedure produces on the order of twenty ROIs each time it is caled.

Regions of interest (ROIs) are chips from the original image that are hypothesized to correspond

to object instances; each ROI also has a mask that details the hypothesized position and

orientation of the object. ROIs can be extracted from likelihood images using a peak detection

procedure, which finds the top N peaks in a likelihood image above a threshold. For these

experiments, the peak detection procedure was parameterized to extract a maximum of twenty

peaks from each likelihood image.

Five procedures can be applied to any ROI. Two of these actions are the special actions

mentioned in Section 4.1, accept and reject. Accept and reject are terminal actions that end the

recognition process. The other three options are: 1) an active contour procedure [Kass, 1988 #34]

that modifies the outline of an ROI mask until the contour lies along edges in the original image;

2) a segmentation procedure [Comaniciu, 1997 #10] that extracts the boundary of a new region

In all of our experiments, we assume that a template of the object is available.

39

(as a 2D contour) within the image chip; or 3) a straight line extraction procedure [Burns, 1986

#7].

A Generalized Hough Transform procedure [Ballard, 1981 #5] matches 2D image contours to the

contour of a template, thus creating new a ROI. A symbolic line matching procedure (LiME;

[Beveridge, 1997 #6]) finds the rotation, translation and scale that maps template (model) lines

onto image lines, again producing an ROI. It should be noted that LiME transforms hypotheses

in scale as well as rotation and translation, which puts it at a disadvantage in this fixed-scale

domain.

5.2) Finding Duplexes

To test the system's ability to learn duplex recognition strategies, we performed N-fold cross-

validation on the set of eight Fort Hood images. In other words, we divided the data into seven

training images and one test image, trained ADORE on seven training images, and then evaluated

the resulting strategy on the test image. We repeated this process eight times, each time using a

different image as the test image. All the results presented this paper are from evaluations of the

test image.

Figure 7 shows the results of two tests, with the ROIs extracted by ADORE overlaid in red on top

of the test image. As a crude measure of success, ADORE found 21 out of 22 duplexes, while

producing 6 false positives. The only duplex not found by ADORE can be seen in the image on

the right of Figure 7- it is the duplex that is half off the bottom right-hand corner of the image!

Every duplex that lies completely inside an image was recognized. (The right side of Figure 7

also shows one false positive.)

40

Figure 7: Duplexes extracted from two images. In the image on the left, all three duplexes were
found. On the right image, a false positive appears on the upper right side. Also, the half-visible
duplex to the bottom right was the only instance missed during testing - and only half of that duplex
lies inside the image.

Analyzing ADORE in terms of false positives and false negatives is misleading, however. Much

of the benefit of ADORE's dynamic strategies lies in its ability to refine imperfect hypotheses,

not just make yes/no decisions. ADORE maximizes its reward function by creating the best

hypotheses possible, given the procedure library. Table 1 gives a quantitative measure of

ADORE's success. The left most entry in Table 1 gives the average reward across all 22 positive

duplex instances from the optimal strategy, where the optimal strategy is determined by trying all

sequences of procedures and taking the best result. The second entry gives the average reward

generated by the strategy learned by ADORE. As further points of comparison: the third entry in

Table 1 gives the average reward for duplex instances if no further processing is applied after

hypotheses are generated; the fourth entry gives the average reward if every duplex ROI is

segmented and the Generalized Hough Transform is used to reposition the ROI in terms of the

region boundary; the fifth entry gives the average reward if the active contour procedure is

41

applied (followed by the Generalized Hough Transform); and the sixth entry is the average

reward if lines are extracted from hypotheses, followed by the LiME symbolic matcher.

Optimal ADORE Fixed: Fixed:
Policy Policy Accept or Segment

Reject

Fixed: Fixed:
Active Line

Contours Extraction
0.8991 0.8803 0.7893 0.8653 0.7775 0.1807 Avg.

Reward ^
Table 1: Comparison between the optimal policy, the policy learned by ADORE, and the four best
fixed policies. The first row considers only positive instances; the second includes a penalty of-1 for
each false positive. Note that there are 24 object instances.

Two conclusions can be drawn from Table 1. First, the strategy learned by ADORE for this

(admittedly simple) task is within about 98% of optimal. Second, the dynamic strategy learned

by ADORE, although not perfect, is better than any fixed sequence of actions. (The best fixed

sequence of actions is to always segment ROIs and apply the Generalized Hough Transform.)

This implies that dynamic strategies are worth learning.

Finding Smaller Houses

Having succeeded in finding a good strategy for finding duplexes, we expected to easily repeat

the process for other styles of houses. Indeed, we expected the resulting policies to be very

similar to the duplex policy. We therefore repeated the experiment using the same methodology

as above but with the house styles shown in Figure 8.

To our dismay, ADORE identified 18 of 19 instances of the house style A but generated 22 false

positives. Combining the results from house styles A through D, ADORE found 47 out of 61

instances, while generating 85 false positives.

42

Figure 8: Templates of four other styles of houses (called A through D going left to right).

Why is this problem harder than finding duplexes? The most critical control decision in this

domain comes after ROIs are extracted from likelihood images. At this point, ADORE has a

choice of five procedures: segmentation, active contours, line extraction, accept or reject. Of

these five, line extraction rums out to never be the optimal choice, but the four other options are

optimal for some ROIs.

Therefore the control policy must select the optimal action based on features of the ROIs. By

inspecting the weights of the neural net Q-functions trained for duplex recognition, we discovered

that two of the eleven features dominated the control decision. The most important feature

measures the average image edge strength along the boundary of the ROI. The second most

important feature measures the percent of pixels outside the mask of the ROI that have roughly

the same intensity value as pixels under the mask. (We informally refer to these as "missing-

pixels, since their intensities suggest that they were accidentally left out of the hypothesis.)

Based mostly on these two features, ADORE learns a strategy for picking the next procedure. If

we interpret the behavior of the Q-functions in terms of these two features, we can describe the

control strategy learned by ADORE as follows (see Figure 9): ROIs with very high boundary

edge strength and very few "missing" pixels should be accepted as is. (The points in Figure 9

correspond to training samples, color coded in terms of the optimal action for each ROI. Dark

blue points correspond to ROIs that receive approximately the same reward whether segmented

43

or accepted as is.) If the edge strength is less high but relatively few pixels are "missing", then

the ROI should be segmented. Although many false hypotheses - shown in yellow in Figure 9

because the optimal action is to reject tern - are segmented according to this rule, there is another

control decision after segmentation and the Generalized Hough Transform, where false

hypotheses can be rejected and true ones accepted. This decision is made easier by the result of

the segmentation procedure. There is also one small spot in the feature space where the active

contour procedure is optimal. This is harder to explain and may result from the training set being

a little too small. Finally, if the missing pixel count is high or the edge strength is low, reject the

ROI. The solid boundaries in Figure 9 approximate our interpretation of thecontrol policy's

decision boundaries.

If we look at the edge strength feature for the other house recognition task, however, we find that

it does not discriminate as well. It turns out that if you overlay the four templates shown in

Figure 8 on top of each other, most of the boundaries are aligned. As a result, if an ROI for style

A is incorrectly placed over an instance of styles B, C or D, the edges strength is still very high.

(The same is true for ROIs of style B, C and D). As a result, when looking for one style of house,

false hypotheses created by instances of the other style have high edge strength, so the feature is

not very discriminating. As a result, ADORE has a harder time learning a strategy that can

distinguish between true instances and false ones, with the result that many more false hypotheses

are created. In effect, the difference in feature space between one style and the next is too small

to reliably distinguish between them.

44

1.4

12

0£-

Oß

0.4

02--

* :

L.*.

*

Reject
* Segmentation
v Snafce
* Submit

Segmentation/Submit

20 30 40 SO 80 70 80 90 100 110 120

Figure 9: ROIs plotted in two dimensions of the eleven dimensional feature space. The color of the
ROI point indicates the optimal control decision for that ROI. (Blue ROIs receive roughly the same
reward whether they are submitted as is or refined through segmentation.) The ellipses correspond
to our interpretation of the decision boundaries learned by the neural networks.

6) Conclusion

We have built a prototype adaptive object recognition system that is capable of learning good

object-specific recognition strategies if and only if features of the intermediate data

representations provide enough information to base intelligent control decisions on. Using this

prototype, we have successfully learned a dynamic control policy that outperforms any fixed

strategy for one recognition task. On the other hand, we were unable to learn a recognition

strategy for another task when the target object class and background objects were too similar to

be distinguished using ADORE's current features.

7) Bibliography

(see Final Report)

45

